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Abstract—In this paper, we investigate the problem of integrity
auditing for cloud deduplication storage. Specifically, in addition
to the outsourced data confidentiality, we also aim to ensure
the integrity of the deduplicated cloud storage. With the existing
works based on Provable Data Possession (PDP)/Proof of Retriev-
ability (PoR), we are either required to rely on a fully trusted
proxy server or inevitably sacrifice the privacy and efficiency.
In contrast, we present a novel message-locked integrity auditing
scheme without an additional proxy server, which is applicable
to both file-level and chunk-level deduplication systems. In
particular, our scheme is storage efficient in the sense that
apart from eliminating the ciphertext redundancy, we also enable
the integrity tag deduplication by a message-derived signing key,
which merely incurs minimal client-side computation overhead.
Besides, we can still publicly perform the integrity check over
any client’s cloud storage by incorporating the proxy re-signature
technique. We show that the proposed scheme will not disclose
the data ownership information and is provably secure under the
Computational Diffie-Hellman (CDH) assumption in the random
oracle model. Finally, the performance evaluation demonstrates
its effectiveness and efficiency.

I. INTRODUCTION

The last decade has witnessed the increasing proliferation
of cloud storage. It is predicted that the cloud data volume
will achieve 40 trillion gigabytes in 2020. A recent survey
conducted by EMC indicates that about 75% of recent digital
data stored in the cloud are duplicated copies [1]. For storage
efficiency, commercial cloud storage services, such as Google
Drive and Dropbox, adopt deduplication technique at the
file/chunk level to store one copy of each data and refer other
duplicates to this stored copy.

To prevent the third-party cloud from accessing user sensi-
tive information, it is a common practice for users to encrypt
their data before uploading. In the meanwhile, we still expect
to enjoy the conventional data utilization services on top of
the encrypted storage [2], [3], [4], [5], [6]. For example,
other than data confidentiality, users may also want to ensure
that their data are stored correctly in the cloud and remain
intact. However, the fact that given randomized encryption and
different user signing keys, the same data produces distinct
ciphertexts and integrity tags, will outright incapacitate data
deduplication and impose additional overhead on the system
using current PDP/PoR techniques [4], [5], [7], [8], [9], [10],
[11]. We may resort to message-locked encryption (MLE) [12],
[13] or its prominent instantiation, convergent encryption (CE)
[14] to enable dedupe functionality. Specifically, deterministic

encryption is carried out with a message-derived key, i.e., the
identical data always produces the identical encryption key and
thus the same ciphertext. In this case, the integrity auditing
for encrypted data using PDP/PoR will be “inefficient”. This
is because, for the identical data, each user is required to
sign it with his associated private key, thereby generating
different integrity tags (or authenticators, and we use them
interchangeably hereafter). On the other hand, cloud needs to
store all these authenticators, even if they are intended for the
same data, so as to provide integrity proof for data owners in
the later auditing process.

In the literature, the existing work for integrity auditing on
deduplication storage, either relies on a fully trusted proxy
server [15] or sacrifices the privacy and computation efficiency
[16]. In [15], an additional independent proxy server is set up
to collect users’ files before uploading them to the cloud. If
the file is unique in the cloud storage, the server computes
the integrity tags for this file using its private key. Otherwise,
it only adds related metadata to the storage. Therefore, the
authenticators are dedupable due to the same server signing
key. However, such strong assumption of the existence of
an additional independent proxy server may not be practical
for most application settings. Towards a serverless solution,
clients in [16] need to compute a set of authenticators with
their respective private keys, regardless of the underlying file
duplication. Subsequently, cloud aggregates those sets of tags
for the same file into one set. In addition to the high user-
side computation cost, this design inevitably introduces a side
channel during the auditing phase such that it discloses the file
ownership information, since the integrity check needs public
key information of all the owners of this file.

Our Contributions. Motivated by CE, we use a message-
derived private key to sign the same data into an identical
set of integrity tags. Therefore, we can reap the benefits of
tag deduplication, which in turn results in the reduced user-
side computation (only the user who first uploads the data to
the cloud storage needs to generate the authenticators) and
cloud storage savings (cloud only keeps one set of integrity
tags for all the corresponding data owners). However, such
design may break the linkage between the data and its owners
during the auditing process, since instead of using the user-
associated public key, performing verification requires the
universal message-related public key. In order to address this
challenging issue, we employ the proxy re-signature technique



[17] to ensure that the cloud can prove the integrity of the
challenged message to its owner under user-associated public
key. Our main contributions can be summarized as follows:

1) We propose a novel message-locked integrity audit-
ing scheme on encrypted cloud deduplication storage
without an additional proxy server. Besides CE-enabled
data deduplication, we can also achieve the integrity
tag deduplication by innovatively using the message-
derived private key while still enabling public integrity
auditing over encrypted storage via the homomorphic
authenticator and proxy re-signature techniques. Our
design is applicable to the practical deduplicated storage
at either granularity, file level or chunk level.

2) The proposed scheme is efficient in terms of storage
savings in the cloud and computation overhead on the
user side, which is validated by our experimental results.

3) We show that our scheme will not leak the data owner-
ship information during the auditing phase. We formally
define and prove the security of the scheme under the
CDH assumption [18] in the random oracle model.

II. RELATED WORK

The concept of Provable Data Possession was first in-
troduced by Ateniese et al. [5], which enables a verifier
to check the integrity of users’ data stored in an untrusted
server. In their scheme, a data owner first splits his file F
into n blocks {m1,m2, ...,mn}. For each block mi and its
index i, the data owner computes an RSA-based homomorphic
authenticator σi using his private key and outsources (mi, σi)
to the storage server. Given file F and its authenticators, the
server can convince a verifier that a linear combination of
blocks

∑n
i=1 νimi (with arbitrary weights {νi}) is correctly

generated via a constant-size proof computed from {σi}.
By combining erasure coding and homomorphic authentica-

tors built from BLS signature [19], H. Shacham and B. Waters
[4] proposed a Proof-of-Retrievability protocol for remote
storage services, which not only assures the data owner of
his outsourced files but also guarantees their full recovery.
Besides, the scheme supports a tradeoff between storage cost
and proof size by utilizing the fragment structure technique.
In particular, a data owner breaks an erasure encoded file into
blocks {m1,m2, ...,mn}, where each block mi consists of
s elements (also named sectors) {mi,1,mi,2, ...,mi,s}. The
authenticator on (i,mi) is constructed based on all the ele-
ments. Such design reduces the storage cost for authenticators
to 1

s× the case without fragment structure. On the other hand,
to prove the integrity of a file, the server needs to compute
an aggregated block including s elements and one aggregated
authenticator.

In order to support dynamic operations on outsourced data
files, Ateniese et al. [7] proposed a dynamic PDP protocol
allowing a limited number of updates and verification requests.
However, block insertions are not allowed. To overcome these
limitations, Erway et al. [8] used authenticated dictionaries
based on rank information to develop a dynamic PDP solu-
tion. Wang et al. [9] designed an improved PoR scheme for

dynamic data based on Merkle Hash Tree and homomorphic
authenticators. Zhu et al. [10] adopted index-hash table to
achieve provable updates to outsourced data. Yang et al. [11]
proposed a dynamic PDP scheme by using an index table
to defend against replay attacks launched by the malicious
storage server.

Note that it is impossible to achieve a fully deduplicated
cloud storage with all the above-mentioned works, because the
integrity tags stored in the cloud are generated under different
users’ private keys.

In the literature, there are auditing schemes focusing on
shared cloud data for a group of users. Wang et al. [20]
exploited ring signature to design an integrity auditing scheme
for shared data in a group. Due to the characteristic of ring
signature, the identity of a signer on each block is also pro-
tected. Yuan et al. [21] used polynomial-based authentication
tags and proxy-tag update techniques to support dynamic
shared data in a group. These works considered data sharing
among a preset group of users [22], which are not allowed
in deduplication systems. Other works considered different
scenarios, e.g., integrity auditing in distributed clouds [23].

Recently, Li et al. [15] proposed an integrity auditing
scheme for encrypted deduplication storage. More specifically,
a user encrypts his file by using a CE-based technique and
uploads the ciphertext to a fully trusted proxy auditor server,
who maintains a distributed MapReduce system. The proxy
auditor server receives all the users’ files before uploading
them to the cloud. If an encrypted file has already been
stored in the cloud, the auditor only adds the user metadata
to the cloud; otherwise, the auditor invokes the MapReduce
system to compute integrity tags with the auditor’s private
key and outsources them together with the file to the cloud.
Thus, integrity tag deduplication is achieved. Albeit the merits
of such additional proxy server design, such as capable of
slowing down the dictionary attack against CE, this strong
assumption is difficult to meet in the practical commercial
context and the comparable functionality can also be realized
in the serverless setting [24].

In [16], similar to the PDP/PoR based schemes for non-
deduplication storage, each user has to compute the integrity
tags, even for the file that has been stored in the cloud, with his
private key. Next, the cloud aggregates the tags on the same
block into one tag. As a result, the tag storage cost can be
reduced. However, user-side auditing requires an aggregated
public key that is computed via the multiplication of all
the file owners’ associated public keys. Hence, the adversary
may launch brute-force attack to recover the file ownership
information by guessing the possible component keys.

III. PRELIMINARIES

A. Convergent Encryption

CE [14] aims at providing unpredictable data confidentiality
in deduplication storage by encrypting a message F using
the message-derived key K. As a special case of MLE [12],
[13], the key K is the message’s fingerprint/hash. Formally, a
convergent encryption scheme can be defined as follows:



• KeyGenCE(1κ, F ) → K: A deterministic key genera-
tion algorithm takes as input a security parameter κ as
well as a message F , and outputs a convergent key K.

• EncryptCE(K,F ) → C: A deterministic symmetric
encryption algorithm takes as input the convergent key
K as well as message F , and outputs a ciphertext C.

• DecryptCE(K,C) → M : A deterministic decryption
algorithm takes as input the convergent key K as well as
ciphertext C, and outputs the original message F .

We assume that the cloud storage is encrypted with CE. We
only focus on the integrity auditing design, which is also
compatible with existing MLE/CE techniques [12], [13], [25].
In practice, CE can be instantiated with any deterministic
symmetric encryption, such as AES128.

B. Proof of Ownership

Proof of Ownership (PoW)[26] is an interactive protocol
running between the storage server and a user. With PoW,
a user is able to convince the server that he indeed owns a
claimed file, in a more efficient way than uploading the whole
file. By its security definition, the probability of a successful
PoW by any malicious user is negligible, with the assumption
that the adversary has the ability to access a portion of the
target file.

C. Proxy re-signature

Proxy re-signature [27], was introduced by Blaze et al.,
which enables a semi-trusted proxy to act as a translator of
signatures between two users, for example, Alice and Bob.
More specifically, given the proxy re-signature key, the proxy
can convert a signature of Alice into a signature of Bob on
the same message. Meanwhile, the proxy cannot learn any
private keys of the two users. In other words, the proxy is not
able to sign any message on behalf of either Alice or Bob. In
this paper, we exploit the proxy re-signature technique [17] to
let the cloud act as the proxy and convert the homomorphic
authenticators under the message-related public/private key
pairs to those with user-associated public/private key pairs
during the integrity auditing process. As a result, the cloud
is able to prove the integrity of the challenged message to the
user under his public key.

D. Bilinear Map

Let G1 and G2 be two multiplicative cyclic groups of the
same prime order q. Let e: G1×G1→G2 denote a bilinear
map constructed with the following properties. (1) Bilinearity:
for all a, b ∈ Z∗q and g1, g2 ∈ G1, e(ga1 , g

b
2) = e(g1, g2)ab; (2)

Non-degeneracy: there exists a point g1 such that e(g1, g1) 6=
1; (3) Computability: e(g1, g2) for any g1, g2 ∈ G can be
computed efficiently.

Definition 1: The CDH Assumption [18]. Given g, gs, g0 ∈
G1 for unknown s ∈ Z∗q , no probabilistic polynomial-time
algorithm can compute gs0 with non-negligible advantage.
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Fig. 1: Architecture

IV. PROBLEM FORMULATION

A. System Model

As illustrated in Fig.1, there are three entities in our system.
Cloud user uploads his CE-encrypted storage to the cloud
while he still can be assured of the outsourced data integrity.
If the uploaded data is unique (it has not been stored in the
cloud), the user will send the integrity tags and re-signature
key along with the ciphertext to the cloud. Otherwise, he will
engage in a PoW protocol to convince the cloud that he is
indeed the owner of the target data. After that, the user only
needs to upload his re-signature key (rekey) to the cloud.

The cloud server provides data storage service to its users.
In order to reduce the storage cost, the cloud only retains
one copy of the duplicate data (including user files and the
associated integrity tags). In addition, the cloud is obligated to
generate a proof in the integrity auditing phase upon receiving
the challenge request from a public auditor.

Since the data integrity is publicly verifiable by user public
key, the role of an auditor can be played by either the user
himself or a public trusted third party. Consistent with previous
works [4], [9], [20], [15], [16], we assume that the auditing
task is delegated to a third-party auditor in order to save the
user’s computation resources. On behalf of the user, the auditor
invokes the integrity auditing protocol by sending the cloud a
challenge. On receipt of the proof from the cloud, the auditor
verifies the target data integrity by the user’s public key and
notifies the user of the result.

B. Design Goals

In this paper, we construct a practical and efficient auditing
scheme for encrypted deduplication storage, which achieves
the following design goals.
• Functionality. The integrity auditing task should be

publicly verifiable. It realizes deduplication not only on
the user data but also on the associated integrity authen-
ticators, without an additional proxy server. Besides, the
proposed scheme is applicable to both file and chunk
based dedupe storage.



• Efficiency. Our scheme should incur low storage cost
in the cloud and low computation overhead on the user
side. Further, the proof generation and verification cost
are expected to be on a par with existing works.

• Security. 1) Ownership information protection: Our pro-
tocol will not disclose the sensitive file ownership in-
formation to the user during the auditing phase1; 2)
Correctness: The cloud is able to generate a valid proof if
the challenged blocks and their integrity tags are correctly
stored. 3) Unforgeability: we will formally prove that our
proposed scheme can achieve existential unforgeability
under adaptive chosen-message attack (see Sect.IV-D for
the security definition).

C. Algorithm Formulation

In this subsection, we provide the formal algorithm defini-
tion of our construction.

Definition 2: Our scheme consists of a tuple of algorithms
as follows.
• KeyGen(1κ) → (pku, sku): A probabilistic algorithm

run by a user takes the security parameter κ as input,
and outputs a user-associated public/private key pair
(pku, sku).

• TagKey(1κ, F ) → (pkF , kF ): A deterministic algo-
rithm run by a user takes as input the security parameter
κ as well as data F , and outputs a message-related
public/private key pair (pkF , kF ).

• Rekey(pkF , kF , pku, sku)→ rku,F : A deterministic al-
gorithm run by a user takes as input the message-related
public/private key pair (pkF , kF ), the user-associated
public/private key pair (pku, sku), and outputs a re-
signature key rku,F .

• TagBlock(pkF , kF , Ci) → Ti: A (possibly) probabilis-
tic algorithm run by a user, takes as input the message-
related public/private key pair (pkF , kF ), a block Ci, and
outputs a publicly verifiable tag Ti. We assume C is the
ciphertext of F by using the convergent encryption, and
Ci is the i-th block of C.

• GenProof(Chal,Σ,Γ, rku,F ) → P: It is a determin-
istic algorithm run by the cloud. It takes as input a
challenge Chal, an ordered collection Σ of blocks, an
ordered collection Γ of tags as well as a re-signature key
rku,F , and outputs a proof P .

• CheckProof(pku, Chal,P): A deterministic algorithm
is run by the auditor to check the correctness of P .
It takes as input a user-associated public key pku, a
challenge Chal, as well as a proof P , and outputs 1
(accept) or 0 (reject).

D. Security model

We consider that cloud may delete users’ data due to server
hacks or failures but will hide the data corruptions for its
reputation [28]. The auditor is assumed to be honest and has

1With deduplication, such information is inevitably leaked to the cloud. A
public auditor will also gradually recover this information if different users
delegate the auditing tasks on the same file.

no incentive to collude with the cloud. A user may infer the file
ownership information during the auditing phase. Furthermore,
it is possible that a portion of the user data are exposed to the
adversary. In this case, we should still guarantee the integrity
of the remaining uncompromised storage.

Definition 3: We state the formal security definition via
the following experiment Exp1κ

A , which is a variation of the
standard existential unforgeability under an adaptive chosen-
message attack [29]. The experiment captures that an ad-
versary cannot successfully construct a valid proof without
possessing all the blocks corresponding to a given challenge,
unless that it correctly guesses all the missing blocks.
Setup: We divide users into normal users and malicious users.
For the l normal users and l

′
malicious users in the system,

the challenger performs algorithm KenGen to generate user-
associated public/private key pairs (pknu, sknu)nu∈[1,l] and
(pkmu, skmu)mu∈[1,l′ ]. In the end, normal users’ public keys
and malicious users’ public/private keys are sent to adversary
A.

Step-1 Query: Adversary A can adaptively query oracle
TagKen to obtain message-related public/private key pairs
(pkF ′w , kF

′
w

)w∈[1,o′ ] for o
′

files. Then, A queries Rekey and
gets re-signature keys rknu,F ′w and rkmu,F ′w for (1 ≤ nu ≤
l, 1 ≤ mu ≤ l

′
, 1 ≤ w ≤ o

′
). Finally, A adaptively query

TagBlock as follows.
Adversary A chooses a block m

′

1 and sends it to the chal-
lenger for the tag under message-related public key pkF ′w . The
challenge calls algorithm TagBlock(pkF ′w , kF

′
w
,m
′

1)→ T
′

1,w

and sends T
′

1,w back to A. Adversary A continually queries
the tags on blocks m

′

2, ...,m
′

n′
under pkF ′w , and the challenger

responds T
′

2,w, ..., T
′

n′ ,w
accordingly. Finally, A stores the

blocks and their tags.
Step-2 Query: A can adaptively query oracle TagKen to

obtain message-related public keys (pkFw)w∈[1,o] for o files.
A then queries Rekey and gets re-signature keys rknu,Fw
for (1 ≤ nu ≤ l, 1 ≤ w ≤ o). In the end, A adaptively query
TagBlock on blocks m1,m2, ...,mn as the case in step-1
query.

Challenge: The challenger requests A to provide a proof of
possession for {mi}i∈I⊆[1,n] determined by a challenge Chal
under the normal user public key pknu.

Forge: The adversary A outputs a possession proof P .
If CheckProof(pknu, Chal,P) returns 1, then the adver-

sary A wins this experiment.
Definition 4: We say that a data integrity auditing scheme

is secure, if for any probabilistic polynomial time adversary A
who does not possess all of the challenged data blocks (e..g,
deleting/modifying one or more blocks), the probability that
A succeeds in the above experiment is negligible, i.e.,

Pr[ExpA
1κ(A) = 1] ≤ negl(κ). (1)

V. OUR CONSTRUCTION

In this section, we first describe our integrity auditing
scheme on encrypted file-level deduplication storage, and then
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Fig. 2: Cloud storage deduplication for the encrypted user data and integrity tags.

apply it to the fine-grained chunk level.

A. Overview

Our scheme enables the deduplication for both file cipher-
text and its authenticators in the cloud storage as shown in Fig.
2. Different from previous PDP/PoR schemes [5], [4], [7], [8],
[9], [10], [11], [15], [16], we use a message-derived private
key instead of the user-associated private key to compute
integrity tags. Such design allows users and the cloud to reap
the benefits of tag deduplication, i.e., the reduced user-side
computation and the cloud storage savings. More precisely,
only the user who first uploads the data to the cloud needs to
generate the authenticators, and the cloud only keeps one set of
integrity tags for all the corresponding data owners. However,
the linkage between the file and its owners may be lost, due
to the use of the universal message-derived signing key. On
the other hand, the key management will be cumbersome if
the user needs to maintain the potentially huge amount of
message-derived key pairs especially in the case of chunk-
based deduplication. Through the proxy re-signature technique
[17], the cloud given a re-signature key can generate an
integrity proof for the challenged blocks under user-associated
public key.

Note that the cloud who knows a portion of the plaintext
data in the storage may recover the user private key if we adopt
the conventional re-signature technique [17]. For instance, this
includes the situation that the cloud also happens to own some
popular files in the storage, or that the cloud can even collude
with malicious users. To address this issue, we protect each
user’s private key with the random masking technique during
the re-signature key generation and the following auditing task
can still be performed with the introduced randomness. In what
follows, we provide the details of our construction for both file
and chunk based deduplication storage.

B. Data Integrity Auditing for File-level Deduplication

Let G1 and G2 be two multiplicative cyclic groups of the
same prime order q, and e: G1×G1→G2 denote a bilinear

Input: File F , user-associated private key sku obtained
from KeyGen.

Output: A re-signature key rku,F or a tuple {ciphertext
C, integrity tags T = (T1, ..., Tn), a message-related
public key pkF , a re-signature key rku,F }.

1: Encrypt file F using CE to ciphertext C.
2: Perform client-side deduplication protocol with the

cloud via IDC = SHA1(C).
3: if IDC is already in the storage then
4: Run PoW with the cloud and invoke TagKey to get

the message-related private key kF .
5: Compute the re-signature rku,F from Rekey.
6: return rku,F
7: else
8: Call TagKey to obtain the message-related pub-

lic/private key pair (pkF , kF )
9: Generate tags T = {T1, ..., Tn} via TagBlock.

10: Compute the re-signature key rku,F through Rekey.
11: return C, T, pkF , rku,F
12: end if

Fig. 3: File uploading process

map. g, g1, ..., gs represent s + 1 random elements in G1.
In addition, H: {0, 1}∗→ G1 and h: {0, 1}∗→Z∗q are two
secure hash functions. The system public parameters are
{e,G1, G2, q, g, g1, ..., gs, H, h}.

Consider that user U wants to outsource file F to the
cloud, he proceeds as shown in Fig.3. The involved algorithms
are described as follows. Note that, to be consistent with
the practical deduplication storage (e.g., Dropbox), we adopt
SHA1 to compute the file identifier.
KeyGen: User U chooses a random number su ∈ Z∗q as

his private key and computes the associated public key pku =
gsu ∈ G1. Besides, U selects another random number xu ∈ Z∗q
as his secret.
TagKey: This algorithm is performed by users to generate



message-related public/private keys. Specifically, user U com-
putes kF = h(F ) ∈ Z∗q . If the data is unique in the cloud, U
also computes pkF = gkF ∈ G1, which enables the cloud to
check the validity of the outsourced tags.

Rekey: It is performed by users to compute re-signature
keys, which enables the cloud to prove the integrity of the
challenged file under user-associated private/public key pair.
U computes du,F = su · (kF )−1 + ru,F , hu,F = ru,F · xu
and also sets rku,F = (du,F , hu,F ), where ru,F is a random
number in Z∗q .

TagBlock: This algorithm is run by users to compute data
integrity tags. We use fragment data structure in tag generation,
as shown in Fig.4. In particular, user U splits C into blocks
{C1, C2, ..., Cn} and further divides each block Ci into sectors
{Ci,1, Ci,2, ..., Ci,s}. For each block Ci, U computes Ti =

[H(IDC ||i) ·
∏s
j=1 g

Ci,j
j ]kF ∈ G1.

1C 2C ...
i
C

1,iC 2,iC...1,iC

... 1-nC n
C

2,iC 1, -siC si
C ,

CiphertextC

Block
i
C

Fig. 4: Fragment structure

GenProof : The auditor chooses a random c-element sub-
set I ⊂ [1, n] along with c random coefficients in Z∗q . Let
Q = {i, vi}i∈I be the set of challenge index-coefficient
pairs. After receiving Q from the auditor, the cloud sends
a proof P = (T , T1, ρ1, ...ρs) back to the auditor, where
T =

∏
(i,vi)∈Q T

du,F ·vi
i ∈ G1, T1 =

∏
(i,vi)∈Q T

hu,F ·vi
i ∈ G1

and ρj =
∑

(i,vi)∈Q vi · Ci,j ∈ Z
∗
q for 1 ≤ j ≤ s.

CheckProof : The auditor sends T1 to U and obtains
T ′1 = T x

−1
u

1 . The auditor then accepts the proof if the following
equation holds.

e(
T
T ′1
, g) = e(

∏
(i,vi)∈Q

H(IDC ||i)vi ·
s∏
j=1

g
ρj
j , pku) (2)

C. Data Integrity Auditing for Chunk-level Deduplication

Here we apply our scheme to the fine-grained chunk based
deduplication storage. In this case, file F is split into fixed-
sized or variable-sized chunks {F (1), F (2), ..., F (n)}, and the
cloud executes the redundancy elimination at the granularity of
chunk level. For convenience, we assume that the chunk size
is constant, and that C(k) is the CE ciphertext of F (k). Each
chunk C(k)(k ∈ [1, n]) can be regarded as a subfile, so that
the auditing protocol can be executed similarly to the file-level
dedupe case. Suppose that the message-derived public/private
key pair is (pkF (k) = gkF (k) , kF (k) = h(F (k)), and the re-
signature key is rk(k)u,F = (d

(k)
u,F , h

(k)
u,F ) = (sku · (kF (k))−1 +

r
(k)
u,F , r

(k)
u,F ·xu), where r(k)u,F is a random number chosen from

Z∗q .

1) If there is no copy of C(k) in the cloud, U computes in-
tegrity tags T (k) = {T (k)

1 , T
(k)
2 , ..., T

(k)
t } via TagBlock

by using the message-derived private key kF (k) . Finally,
U outsources C(k), integrity tags T (k), the re-signature
key rk

(k)
u,F = (d

(k)
u,F , h

(k)
u,F ) and the message-related

public key pk(k)F to the cloud.
2) Otherwise, U performs the PoW protocol with the cloud

and sends the re-signature key rk(k)u,F to the cloud.

TagBlock: For each block C
(k)
i (1 ≤ i ≤ t), U sets the

chunk identifier to be IDC(k) = SHA1(C(k)) and computes

T
(k)
i = [H(IDC(k) ||i)

∏s
j=1 g

C
(k)
i,j

j ]kF (k) .

C(k) =


C(k)1

C(k)2

...

C(k)t

 =


C(k)1,1 C(k)1,2 ... C(k)1,s

C(k)2,1 C(k)2,2 ... C(k)2,s

... ... ...

C(k)t,1 C(k)t,2 ... C(k)t,s

 (3)

GenProof : The auditor chooses a random challenge set
I of c indices along with c random coefficients in Z∗q .
We use (k, i) ∈ I to indicate the index of the challenged
block C(k)i and v(k)i is the corresponding challenge coefficient.
Let Q={(k, i), v(k)i }(k,i)∈I be the set of challenge index-
coefficient pair. Upon receiving Q, the cloud proceeds as
follows and returns P to the auditor.

1) Compute T =
∏

((k,i),v
(k)
i )∈Q(T

(k)
i )d

(k)
u,F ·v

(k)
i ∈ G1.

2) Compute T1 =
∏

((k,i),v
(k)
i )∈Q(T

(k)
i )h

(k)
u,F ·v

(k)
i ∈ G1 and

ρj =
∑

((k,i),v
(k)
i )∈Q v

(k)
i · C

(k)
i,j for 1 ≤ j ≤ s.

3) Set proof P = {T , T1, ρ1, .., , ρs}.
CheckProof : The auditor sends T1 to U and obtains T ′1 =

T x
−1
u

1 . If Equation (4) holds, the auditor accepts the proof;
otherwise, the proof will be rejected.

e(
T
T ′1
, g) = e(

∏
((k,i),v

(k)
i )∈Q

H(IDC(k) ||i)v
(k)
i

s∏
j=1

g
ρj
j , pku)

(4)

VI. SECURITY ANALYSIS

Our scheme achieves the confidentiality for unpredictable
data by using the convergent encryption. In addition, data own-
ership information is not disclosed during the tag verification
phase since only the user’s public key pku is involved. Thus,
we focus on the correctness and unforgeability of our integrity
auditing scheme.

Theorem 1: The cloud is able to generate a proof that passes
the verification if all the challenged blocks and their integrity
tags are correctly stored.

Proof: Proving the correctness of our integrity auditing
scheme for file and chunk based deduplication storage is
equivalent to proving that Equation (2) and (4) hold. Due to
page limitation, we only show the correctness of Equation (2)
and that of Equation (4) can be proved similarly. Based on the



properties of bilinear maps, the correctness can be deduced
from the followings.

e( TT ′ , g)

= e(
∏

(i,vi)∈Q T
du,F vi
i · (

∏
(i,vi)∈Q T

ru,F vi
i )−1, g)

= e(
∏

(i,vi)∈Q T
sku·(kF )−1vi
i , g)

= e(
∏

(i,vi)∈Q[H(IDC ||i) ·
∏s
j=1 g

Ci,j
j ]su·vi , g)

= e(
∏

(i,vi)∈Q[H(IDC ||i)vi ·
∏s
j=1 g

viCi,j
j ], pku)

= e(
∏

(i,vi)∈Q[H(IDC ||i)vi ·
∏s
j=1 g

ρj
j ], pku)

(5)

Theorem 2: Under the CDH assumption, our proposed
scheme is secure against an adaptive chosen-message attack
in the random oracle model.

Proof: We assume that there exists an adversary A
succeeding in the experiment Exp1κ

A with non-negligible
probability. Then we show how to construct an adversary B
that uses A to solve the CDH problem. That is, given a CDH
tuple (g, ga, g0), the adversary B is able to compute ga0 with
non-negligible probability. B simulates the proposed scheme
for A as follows.

Setup: The normal user-associated public keys are set to be
pknu = gasnu for nu ∈ [1, l], where snu are randomly chosen
from Z∗q . In addition, B sets gj = g

yj
0 for 1 ≤ j ≤ s. Besides,

B chooses xnu randomly from Z∗q . For malicious users, B
selects random numbers xmu, smu(mu ∈ [1, l

′
]) and computes

the public keys pkmu = gsmu . Finally, the system parameters,
the normal user public keys pknu(nu ∈ [1, l]), the malicious
public and private key pairs (pkmu, smu, xmu)(mu ∈ [1, l

′
])

are given to the adversary A.
Step-1 Query: There are four types of queries that A can

request: oracle TagKey, oracle Rekey, oracle TagBlock
and the hash function H .

1) Oracle TagKey(1κ, F
′

w): if F
′

w has not been queried
before, B returns a random number x

′

w ∈ Z∗q to A and
records it in list TagKey. Otherwise, B obtains x

′

w from
list TagKey and responds it to A.

2) Oracle ReKey(pkF ′w , pknu/pkmu): for malicious user

public key pkmu, B returns x
′

w

−1
· smu + rmu,w′ · xmu

to A, where rmu,w′ is a random in Z∗q ; for normal user,
B returns two random numbers to A.

3) Oracle TagBlock(pkF ′w ,m
′

i, IDm
′
i
||i): if IDm

′
i
||i(i ∈

[1, n
′
]) has not been queried before, B chooses a ran-

dom element from G1 as the value of H(IDmi)||i)
and then computes T

′

i = ((H(IDmi)||i)
∏s
j=1 g

mi
j )x

′
w

for the query. In the end, B records T
′

i in list and
returns H(IDmi ||i) for the corresponding hash query.
Otherwise, B returns T

′

i from list TF ′w to A.
Step-2 Query: There are three types of queries that A

can request: oracle Rekey, oracle TagBlock and the hash
function H . For the message-related public key, B sets pkFw =
gaxw , where xw is a random number in Z∗q .

1) Oracle ReKey(pkFw , pknu): B returns (x−1w · snu +
rnu,w, xnurnu,w) to A, where rnu,w is a random number
in Z∗q .

2) Oracle TagBlock(pkFw ,mi, IDmi ||i): if IDmi ||i(i ∈
[1, n]) has not been queried before, B computes Ti =
gaxwri and records it in list TFw . In the end, B returns
Ti and H(IDmi ||i) = gri∏s

j=1 g
mi,j
j

for the corresponding

hash query. It is easily observed that Ti is a valid tag
under the public key pkFw . If {mi, IDmi ||i} is in list
TFw , B obtains Ti and returns it to A.

Challenge: For simplicity, B requests the adversary A to prove
the integrity of all blocks m1, ...,mn by sending coefficients
a1, ..., an under the public key pku.

Forge: We assume that A has deleted or modified one or
more blocks. Let ρ

′

j =
∑n
i=1 aimi,j be the real result. A

returns a proof P = (T , T1, ρ1, ..., ρs) satisfying e( T
T x
−1
nu

1

, g) =

e(
∏c
i=1H(IDC ||i)ai ·

∏s
j=1 g

ρj
j , pku), but there exists at least

one value ρj 6= ρ
′

j . Since P is a valid proof under public key
pku, we have

T
T x
−1
nu

1

= [
∏n
i=1H(IDmi ||i)ai ·

∏s
j=1 g

ρj
j ]asu

= (
∏n
i=1( gri∏s

j=1 g
mi,j
j

)ai ·
∏s
j=1 g

ρj
j )asu

= (
∏n
i=1 g

riai
∏s
j=1 g

ρj−ρ
′
j

j )asu

= gasu
∑n
i=1 riai(g

su
∑s
j=1 yj(ρj−ρ

′
j)

0 )a

(6)

From the equation (7), B can easily compute ga0 =

( T
T x
−1
nu

1 gasu
∑n
i=1

riai
)[su

∑s
j=1 yj(ρj−ρ

′
j)]
−1

.

Now, we analyze the probability that A successfully forges
the values satisfying ρj = ρ

′

j for (1 ≤ j ≤ s) if A does not
possess all the sectors mi,j(1 ≤ i ≤ n, 1 ≤ j ≤ s). Consider
the following multivariate polynomial in finite field Z∗q :

P (m1,j , ...,mn,j) = a1 ·m1,j + ...+ an ·mn,j − ρ
′

j . (7)

Note that adversary A forging ρj correctly is equivalent to
find ρ such that P = 0. However, due to Lemma 1 in [30], for
any (non-zero) multivariate polynomial P in Z∗q of degree d
(in our case d = 1) and randomly chosen m1,j , ...,mn,j with
unknown ρ

′

j , the probability that P = 0 is d
q = 1

q . Thus, we
conclude that the probability that adversary A forges a valid
value ρj = ρ

′

j is negligible.
The interactions between A and B are indistinguishable

from that between A and an honest challenger in the exper-
iment, as B chooses all parameters according to our scheme
for file-level deduplication storage. The proof of the security
for the chunk-level case is similar, and we omit it here due to
the limited space. Therefore, our scheme is secure against an
adaptive chosen-message attack in the random oracle model
under the CDH assumption.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our pro-
tocol in terms of storage cost, communication overhead, and
computation efficiency. Note that we focus on the proposed
integrity auditing scheme and do not intend to measure the
standard CE and PoW cost here. In addition, since our scheme
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Fig. 5: Computation efficiency. Experiment on a 10 MB file with chunk size of 32 KB and 10 sectors in a block.

shares the similar design with [4] that was proposed in the
non-deduplicaton setting, we draw the comparison here to
demonstrate the efficiency of our scheme2.

We analyze the protocol performance by both numerical
evaluation and simulation. For the file-level deduplication
storage, we assume that m users store the same file in the
cloud, and the ciphertext of the file includes nF blocks. In
the case of chunk-level dedupe, we consider that a user file
contains nC chunks of which k chunks are redundant. We
define the deduplication percentage dp as the ratio of the
number of chunks that have duplicate copies in the cloud
storage to the total number of chunks in the file, i.e., dp = k

nC
.

Each chunk is further split into t blocks. Moreover, we conduct
the experiment on a Linux server with Intel Core i5 3.3
GHz Processor and 4 GB Memory. For simplicity, we choose
type-A (symmetric) pairing with 80-bit security level using
PBC library3. Note that our scheme is also compatible with
asymmetric pairings.

A. Storage cost

We measure the cloud-side storage cost for integrity tags
and re-signature keys. As per our assumption, there are nF
integrity tags and m re-signature keys, which accounts for
nF · |G1| + 2m · |Z∗q | storage cost. |G1|(|Z∗q |) denotes the
length of an element in G1(Z∗q ). In contrast, the corresponding
storage overhead with previous works [4] is m · nF · |G1|.

For the chunk-level case, cloud needs to store t · (nC − k)
tags and nC re-signature keys, which impose a cost of
t · (nC − k) · |G1| + 2nC · |Z∗q |. However, the cloud in
[4] has to store t · nC tags with the size of t · nC · |G1|.
For ease of illustration, we set the system security level as
80 bits, which indicates |G1| = 64 bytes and |Z∗q | = 20
bytes. Thus, the storage cost ratio of our scheme to [4]
is p =

t·(nC−k)·|G1|+2nC ·|Z∗q |
t·nC ·|G1| = 1 − k

nC
+ 40

64t . Consider
an example with 32 KB chunk size and s=10. We have
t = d 32∗102420∗10 e = 164 and p = 1.003− k

nC
, which indicates that

if more than 3‰ chunks in a file are deduplicated, our scheme
will outperform [4] in terms of cloud storage savings. For

2We adapt [4] to the encrypted deduplication scenario to facilitate the
comparison.

3https://crypto.stanford.edu/pbc/.

reference, the typical deduplication percentage ranges from
75% to 99.8% [31]. The more duplicate chunks, the more
storage efficiency we achieve with our scheme.

B. Communication overhead

We evaluate the communication overhead incurred by one
challenge-proof interaction between the cloud and auditor.
Specifically, the challenge is composed of c index-coefficient
pairs {i, vi}, where i denotes the index of a block. Hence,
one interaction needs c · log nF + c · |Z∗q | bandwidth for
the challenge, and 2|G1| + s · |Z∗q | for the proof response
P = (T , T1, ρ1, ...ρs) in the file-based deduplication. At the
chunk level, challenge consumes c · (log nC + log t) + c · |Z∗q |
bandwidth. The cloud needs to send a proof consisting of two
elements in G1 and s elements in Z∗q . The communication of
our scheme requires one more element in G1 compared to [4].

C. Computation Efficiency

We evaluate the related computation efficiency of our pro-
tocol design. In particular, we measure the time cost for the
integrity tag generation, proof computation and verification.
Let ExpG1

denote one exponentiation in G1, Pair be one
pairing operation on e : G1×G1 → G2, and HashG1

represent
one hash operation from {0, 1}∗ → G1. In addition, MulG1

and Add/MulZ∗q denote one multiplication in G1 and one
modular addition/multiplication in Z∗q , respectively.

1) Tags generation. As shown in Sect.V, m users in file-
based deduplication should compute nF tags and m re-
signature keys, and the computation cost is nF · [HashG1

+
(s + 1)ExpG1

+ sMulG1
] + 3m · Add/MulZ∗q . With [4], it

takes nF · l · [HashG1 +(s+1)ExpG1
+s ·MulG1 ] to compute

integrity tags for the same file.
In the chunk-level deduplication scheme, a user computes

t · (nC − k) tags and nC re-signature keys, i.e., t · (nC −
k)[HashG1 +(s+1) ·ExpG1

)+s ·MulG1 ]+3nC ·Add/MulZ∗q .
Fig.5(a) shows that the time cost for tag generation with our
scheme is inversely proportional to dp, whereas [4] is constant
in any circumstances and user needs to compute authenticators
for all the chunks in the file.

2) Proof generation. The proof generation cost is determined
by the number c of challenge index-coefficient pairs and the



number s of sectors in a block . For both file-level and chunk-
level deduplication storages, the cloud spends 2c · ExpG1

+
2(c− 1) ·MulG1 + [c+ s(2c− 1)] ·Add/MulZ∗q on computing
a proof P = (T , T1, ρj∈[1,s]). In [4], the tag generation cost
is c · ExpG1

+ (c− 1) ·MulG1
+ s(2c− 1) · Add/MulZ∗q .

The authors in [5] proved that a verifier can detect cloud
misbehavior with a high probability by challenging a small
number of random blocks. For example, if 1% of the file is
deleted or modified, a verifier can detect it with a probability
greater than 95% or 99% by setting the number c of challenged
blocks to be 300 or 460. From Fig.5(b), we deduce that the
deduplication does not bring any extra computation overhead
to the proof generation.

3) Proof verification. The proof verification cost is com-
parable with [4]. The auditor computes two pairings, c + s
exponentiations and c+ s− 1 multiplications in G1 to verify
the proof. As shown in Fig.5(c), given the fixed system
parameters, the verification cost only depends on the challenge
request, irrelevant to the duplication level of the storage.

In contrast to the existing works, our scheme exhibits better
storage and computation efficiency. Specifically, the enabled
integrity tag deduplication offers us low cloud storage cost
and also low computation overhead for the tag generation on
the user side, with minimal computation cost during the proof
generation/verification phase.

VIII. CONCLUSION

In this paper, we propose a novel serverless message-locked
integrity auditing scheme for encrypted deduplication storage.
Our design is very suitable for the outsourcing model, from
which each participant can reap the benefit. For cloud users,
we offer the data confidentiality and integrity guarantees at the
same time while incurring minimal computation overhead. On
the other hand, the cloud can still leverage the deduplication
technique to reduce its operating cost. The security analysis
shows that our scheme is provably secure under the CDH
assumption in the random oracle model. Experimental results
demonstrate its efficiency, effectiveness, and practicality.
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